本文共 1332 字,大约阅读时间需要 4 分钟。
吴恩达 Andrew Ng
目标定位 Object Localization
- Classification with localization 分类并且确定目标位置(一个物体)
- Detection 定位(多个物体)
- target label y
特征点检测 Landmark Detection
- 设置特征点坐标值作为输出
- 所有标签在图片中保持一致 labels are consistent across different images
目标检测 Object Detection
- Sliding windows detection 滑动窗口检测
- 固定步幅,滑动窗口,遍历图像的每个区域
- 裁剪后的图像输入卷积网络,对每个位置进行分类
- 卷积网络进行单个分类的计算成本很高
- granularity 粒度,stride 步幅
Convolutional Implementation of Sliding Windows
Bounding Box Predictions
- YOLO algorithm (You Only Look Once), more accuracy bounding box
- assign an object to grid cell which contains the mid point of the object
交并比 Intersection Over Union
- 衡量定位精确度的一种方式
- 交集除以并集
- a measure of the overlap between two bounding boxes
非极大值抑制 Non-max Suppression
- output maximal probabilities classifications
- suppress closed and non-maximal ones
- 把其他与最大概率的边界框有高交并比的边界框抑制掉
Anchor Boxes
- 一个格子中检测两个物体
- Each object in training image is assigned to grid cell that contains object’s midpoint and anchor box for the grid cell with highest IoU
- 两个物体的中心的位于同一个格子概率很小
- 人工选择 Anchor Box 的形状来配合需要检测的物体
- 通过 k-means algorithm 聚类,选择合适的形状
YOLO Algorithm
Training
Making predictions
Output the non-max supressed outputs
候选区域 Region Proposals
- Regions with Convolutional Neural Network
- 选出一些格子,在其上运行卷积网络
- segmentation algorithm 分割算法,选出色块
- 、